About Stem Cell Therapy

TED Alan Russell on regenerating our bodies

I'm going to talk to you today about hopefully converting fear into hope. When we go to the physician today, when we go to the doctor's office and we walk in, there are words that we just don't want to hear. There are words that we're truly afraid of. Diabetes, cancer, Parkinson's, Alzheimer's, heart failure, lung failure. Things that we know are debilitating diseases, for which there's relatively little that can be done.

And what I want to lay out for you today is a different way of thinking about how to treat debilitating disease, why it's important. Why without it, perhaps, our health care system will melt down, if you think it already hasn't. And where we are clinically today, and where we might go tomorrow, and what some of the hurdles are. And we're going to do all of that in 18 minutes, I promise.

I want to start with this slide, because this slide sort of tells the story the way Science Magazine thinks of it. This was an issue from 2002 that they published with a lot of different articles on the bionic human. It was basically a regenerative medicine issue. Regenerative medicine is an extraordinarily simple concept that everybody can understand. It's simply accelerating the pace at which the body heals itself to a clinically relevant timescale. So we know how to do this in many of the ways that are up there. We know that if we have a damaged hip, you can put an artificial hip in. And this is the idea that Science Magazine used on their front cover.

This is the complete antithesis of regenerative medicine. This is not regenerative medicine. Regenerative medicine is what Business Week put up when they did a story about regenerative medicine not too long ago. The idea is that instead of figuring out how to ameliorate symptoms with devices and drugs and the like -- and I'll come back to that theme a few times -- instead of doing that, we will regenerate lost function of the body by regenerating the function of organs and damaged tissue. So that at the end of the treatment, you are the same as you were at the beginning of the treatment.

Very few good ideas -- if you agree that this is a good idea -- very few good ideas are truly novel. And this is just the same. If you look back in history, Charles Lindbergh -- who was better known for flying airplanes -- was actually one of the first people, along with Alexis Carrel, one of the Nobel Laureates from Rockefeller, to begin to think about, could you culture organs? And they published this book in 1937, where they actually began to think about, what could you do in bio-reactors to grow whole organs? We've come a long way since then. I'm going to share with you some of the exciting work that's going on.

But before doing that, what I'd like to do is share my depression about the health care system and the need for this with you. Many of the talks yesterday talked about improving the quality of life and reducing poverty. And essentially increasing life expectancy all around the globe. One of the challenges is that the richer we are, the longer we live. And the longer we live, the more expensive it is to take care of our diseases as we get older.

This is simply the wealth of a country versus the percent of population over the age of 65. And you can basically see that the richer a country is, the older the people are within it. Why is this important? And why is this a particularly dramatic challenge right now? If the average age of your population is 30, then the average kind of disease that you have to treat is maybe a broken ankle every now and again, maybe a little bit of asthma. If the average age in your country is 45 to 55, now the average person is looking at diabetes, early-onset diabetes, heart failure, coronary artery disease. Things that are inherently more difficult to treat, and much more expensive to treat.

Just have a look at the demographics in the U.S. here. This is from "The Untied States of America." In 1930, there were 41 workers per retiree. 41 people who were basically outside of being really sick, paying for the one retiree who was experiencing debilitating disease. In 2010, two workers per retiree in the U.S. And this is matched in every industrialized, wealthy country in the world. How can you actually afford to treat patients, when the reality of getting old looks like this?

This is age versus cost of health care. And you can see that right around age 45, 40 to 45, there's a sudden spike in the cost of health care. It's actually quite interesting -- if you do the right studies, you can look at how much you as an individual spend on your own health care, plotted over your lifetime. And about seven years before you're about to die, there's a spike. And you can actually -- (Laughter) -- we won't get into that. (Laughter)

There are very few things, very few things that you can really do that will change the way that you can treat these kinds of diseases and experience what I would call healthy aging. I'd suggest there are four things. And none of these things include an insurance system or a legal system. All those things do is change who pays. They don't actually change what the actual cost of the treatment is.

One thing you can do is not treat. You can ration health care. We won't talk about that anymore. It's too depressing. You can prevent. Obviously a lot of monies should be put into prevention.

But perhaps most interesting, to me anyway, and most important, is the idea of diagnosing a disease much earlier on in the progression, and then treating the disease to cure the disease instead of treating a symptom. Think of it in terms of diabetes, for instance. Today, with diabetes, what do we do? We diagnose the disease eventually, once it becomes symptomatic, and then we treat the symptom for 10, 20, 30, 40 years. And we do OK. Insulin's a pretty good therapy. But eventually it stops working, and diabetes leads to a predictable onset of debilitating disease.

Why couldn't we just inject the pancreas with something to regenerate the pancreas early on in the disease, perhaps even before it was symptomatic? And it might be a little bit expensive at the time that we did it, but if it worked, we would truly be able to do something different.

This video, I think, gets across the concept that I'm talking about quite dramatically. This is a newt, re-growing its limb. If a newt can do this kind of thing, why can't we? I'll actually show you some more important features about limb regeneration in a moment. But what we're talking about in regenerative medicine is doing this in every organ system of the body, for tissues and for organs themselves. So today's reality is that if we get sick, the message is we will treat your symptoms, and you need to adjust to a new way of life.

I would pose to you that tomorrow -- and when tomorrow is we could debate, but it's within the foreseeable future -- we will talk about regenerative rehabilitation. There's a limb prosthetic up here, similar actually to the one that the soldier that's come back from Iraq ... there are 370 soldiers that have come back from Iraq that have lost limbs. Imagine if instead of facing that, they could actually face the regeneration of that limb. It's a wild concept. I'll show you where we are at the moment in working towards that concept.

But it's applicable, again, to every organ system. How can we do that? The way to do that is to develop a conversation with the body. We need to learn to speak the body's language. And to switch on processes that we knew how to do when we were a fetus. A mammalian fetus, if it loses a limb during the first trimester of pregnancy, will re-grow that limb. So our DNA has the capacity to do these kinds of wound-healing mechanisms. It's a natural process, but it is lost as we age. In a child, before the age of about six months, if they lose their fingertip in an accident, they'll re-grow their fingertip. By the time they're five, they won't be able to do that anymore.

So to engage in that conversation with the body, we need to speak the body's language. And there are certain tools in our toolbox that allow us to do this today. I'm going to give you an example of three of these tools through which to converse with the body.

The first is cellular therapies. Clearly, we heal ourselves in a natural process, using cells to do most of the work. Therefore, if we can find the right cells and implant them in the body, they may do the healing. Secondly, we can use materials. We heard yesterday about the importance of new materials. If we can invent materials, design materials, or extract materials from a natural environment, then we might be able to have those materials induce the body to heal itself. And finally, we may be able to use smart devices that will offload the work of the body and allow it to heal.

I'm going to show you an example of each of these, and I'm going to start with materials. Steve Badylak -- who's at the University of Pittsburgh -- about a decade ago had a remarkable idea. And that idea was that the small intestine of a pig, if you threw away all the cells, and if you did that in a way that allowed it to remain biologically active, may contain all of the necessary factors and signals that would signal the body to heal itself. And he asked a very important question. He asked the question, if I take that material, which is a natural material that usually induces healing in the small intestine, and I place it somewhere else on a person's body, would it give a tissue-specific response, or would it make small intestine if I tried to make a new ear?

I wouldn't be telling you this story if it wasn't compelling. The picture I'm about to show you -- (Laughter) -- is a compelling picture. However, for those of you that are even the slightest bit squeamish -- even though you may not like to admit it in front of your friends -- the lights are down. This is a good time to look at your feet, check your Blackberry, do anything other than look at the screen. (Laughter)

What I'm about to show you is a diabetic ulcer. And although -- it's good to laugh before we look at this. This is the reality of diabetes. I think a lot of times we hear about diabetics, diabetic ulcers, we just don't connect the ulcer with the eventual treatment, which is amputation, if you can't heal it. So I'm going to put the slide up now. It won't be up for long. This is a diabetic ulcer. It's tragic. The treatment for this is amputation. This is an older lady. She has cancer of the liver as well as diabetes, and has decided to die with what' s left of her body intact.

And this lady decided, after a year of attempted treatment of that ulcer, that she would try this new therapy that Steve invented. That's what the wound looked like 11 weeks later. That material contained only natural signals. And that material induced the body to switch back on a healing response that it didn't have before.

There's going to be a couple more distressing slides for those of you -- I'll let you know when you can look again. This is a horse. The horse is not in pain. If the horse was in pain, I wouldn't show you this slide. The horse just has another nostril that's developed because of a riding accident. Just a few weeks after treatment -- in this case, taking that material, turning it into a gel, and packing that area, and then repeating the treatment a few times -- and the horse heals up. And if you took an ultrasound of that area, it would look great.

Here's a dolphin where the fin's been re-attached. There are now 400,000 patients around the world who have used that material to heal their wounds. Could you regenerate a limb? DARPA just gave Steve 15 million dollars to lead an eight-institution project to begin the process of asking that question.

And I'll show you the 15 million dollar picture. This is a 78 year-old man who's lost the end of his fingertip. Remember that I mentioned before the children who lose their fingertips. After treatment that's what it looks like. This is happening today. This is clinically relevant today. There are materials which do this. There are the heart patches.

But could you go a little further? Could you, say, instead of using material, can I take some cells along with the material, and remove a damaged piece of tissue, put a bio-degradable material on there? You can see here a little bit of heart muscle beating in a dish. This was done by Teruo Okano at Tokyo Women's Hospital. He can actually grow beating tissue in a dish. He chills the dish, it changes its properties and he peels it right out of the dish. It's the coolest stuff.

Now I'm going to show you cell-based regeneration. And what I'm going to show you here is stem cells being removed from the hip of a patient. Again, if you're squeamish, you don't want to watch. But this one's kind of cool. So this is a bypass operation, just like what Al Gore had, with a difference. In this case, at the end of the bypass operation, you're going to see the stem cells from the patient that were removed at the beginning of the procedure being injected directly into the heart of the patient. And I'm standing up here because at one point I'm going to show you just how early this technology is. Here go the stem cells, right into the beating heart of the patient. And if you look really carefully, it's going to be right around this point you'll actually see a back-flush. You see the cells coming back out. We need all sorts of new technology, new devices, to get the cells to the right place at the right time.

Just a little bit of data, a tiny bit of data. This was a randomized trial. At this time this was an N of 20. Now there's an N of about 100. Basically, if you take an extremely sick patient and you give them a bypass, they get a little bit better. If you give them stem cells as well as their bypass, for these particular patients, they became asymptomatic. These are now two years out. The coolest thing would be is if you could diagnose the disease early, and prevent the onset of the disease to a bad state.

This is the same procedure, but now done minimally invasively, with only three holes in the body where they're taking the heart and simply injecting stem cells through a laparoscopic procedure. There go the cells. We don't have time to go into all of those details, but basically, that works too. You can take patients who are less sick, and bring them back to an almost asymptomatic state through that kind of therapy.

Here's another example of stem-cell therapy that isn't quite clinical yet, but I think very soon will be. This is the work of Kacey Marra from Pittsburgh, along with a number of colleagues around the world. They've decided that liposuction fluid, which -- in the United States, we have a lot of liposuction fluid. (Laughter) It's a great source of stem cells. Stem cells are packed in that liposuction fluid. So you could go in, you could get your tummy-tuck. Out comes the liposuction fluid, and in this case, the stem cells are isolated and turned into neurons. All done in the lab. And I think fairly soon, you will see patients being treated with their own fat-derived, or adipose-derived, stem cells.

I talked before about the use of devices to dramatically change the way we treat disease. Here's just one example before I close up. This is equally tragic. We have a very abiding and heartbreaking partnership with our colleagues at the Institute for Surgical Research in the US Army, who have to treat the now 11,000 kids that have come back from Iraq. Many of those patients are very severely burned.

And if there's anything that's been learned about burn, it's that we don't know how to treat it. Everything that is done to treat burn -- basically we do a sodding approach. We make something over here, and then we transplant it onto the site of the wound, and we try and get the two to take. In this case here, a new, wearable bio-reactor has been designed -- it should be tested clinically later this year at ISR -- by Joerg Gerlach in Pittsburgh. And that bio-reactor will lay down in the wound bed. The gun that you see there sprays cells. That's going to spray cells over that area. The reactor will serve to fertilize the environment, deliver other things as well at the same time, and therefore we will seed that lawn, as opposed to try the sodding approach. It's a completely different way of doing it.

So my 18 minutes is up. So let me finish up with some good news, and maybe a little bit of bad news. The good news is that this is happening today. It's very powerful work. Clearly the images kind of get that across. It's incredibly difficult because it's highly inter-disciplinary. Almost every field of science engineering and clinical practice is involved in trying to get this to happen.

A number of governments, and a number of regions, have recognized that this is a new way to treat disease. The Japanese government were perhaps the first, when they decided to invest first 3 billion, later another 2 billion in this field. It's no coincidence. Japan is the oldest country on earth in terms of its average age. They need this to work or their health system dies. So they're putting a lot of strategic investment focused in this area. The European Union, same thing. China, the same thing. China just launched a national tissue-engineering center. The first year budget was 250 million US dollars.

 

In the United States we've had a somewhat different approach. We -- (Laughter) -- oh, for Al Gore to come and be in the real world as president. We've had a different approach. And the approach has basically been to just sort of fund things as they come along. But there's been no strategic investment to bring all of the necessary things to bear and focus them in a careful way.

And I'm going to finish up with a quote, maybe a little cheap shot, at the director of the NIH, who's a very charming man. Myself and Jay Vacanti from Harvard went to visit with him and a number of his directors of his institute just a few months ago, to try and convince him that it was time to take just a little piece of that 27.5 billion dollars that he's going to get next year and focus it, in a strategic way, to make sure we can accelerate the pace at which these things get to patients. And at the end of a very testy meeting, what the NIH director said is, "Your vision is larger than our appetite." I'd like to close by saying that no one's going to change our vision, but together we can change his appetite. Thank you.

TED アラン・ラッセル: 肉体の再生 日本語

今日 お話しするのは 願わくは恐怖を希望に変えることです 私達は病院に行くと 診察室の中で 耳にしたくない言葉があります 私達が本当に恐れている言葉です 糖尿病 癌 パーキンソン病 アルツハイマー 心不全 肺不全 私達の認識は 身体をむしばむ 対処法がほとんどない病気ということです

今日お話したいのは 不治の病への従来とは違ったアプローチと その重要性です それがなければ 医療制度は崩壊するでしょう まだ していなければの話ですが… 臨床の現在と 明日の方向性 問題点を取り上げ 以上の点を18分で紹介します

こちらを見てください サイエンスマガジン誌の見方が表れています バイオニックヒューマンに関する 様々な記事を集めた2002年の特集号です 要は 再生医療特集ということです 再生医療とは非常に簡単な概念で 誰でも理解できます 自然治癒のスピードを医療処置のように 加速するのです ここに挙げられている様々な方法を我々は知っています 股関節疾患には人工関節で治します サイエンスマガジン誌の表紙で紹介された考え方です

実はこれは再生医療とは正反対で 再生医療とは呼びません ビジネスウィーク誌が少し前に 特集したのが本当の再生医療です その概念とは 器具や薬で症状を 改善させようとする代わりに これは後から触れますが 臓器や傷ついた組織の機能を再生することで 失われた体の機能を再生するのです 治療が終了すると 健康時の体が取り戻せます

これは良いアイディアだと思いますが 良いアイディアは新しくないことが多いものです この案も同じです 歴史を振り返れば 有名な飛行家のチャールズ リンドバーグは ノーベル賞を受賞した― アレクシス カレルと共に 臓器の培養を 最初に考えた1人です 彼らは1937年に本を出版し バイオリアクターで いかに臓器を生成できるのか考え始め それ以降 躍進を遂げました 進行中の素晴らしい事例を幾つか紹介します

でも その前に 医療制度に対する 私の不満と 再生医療の必要性を 話したいと思います 昨日は生活の質の向上や 貧困を減らすという話をたくさん聞きました 実質的に平均寿命を延ばすということです でも より裕福になれば 寿命も延びるわけで 寿命が延びれば 加齢と共に 病気の治療費も増加するということです

これは65歳以上の人口の割合と 国の豊かさの関係を示した図です 国が より裕福であればあるほど 高齢者は多くなります なぜ これが重要なのか? なぜ これが危急の難題なのか? 平均年齢が30歳だと 処置が必要な平均的な病気は 時折見られる足首の骨折や 喘息などでしょう 平均年齢が45歳から55歳になると 平均的なのは 早期の糖尿病 心不全 冠動脈疾患などです 治療がより難しく 医療費がより高い― 病気が出てきます

これは米国の人口統計データです ある本から借用した資料です 1930年 年金生活者1人に対し労働者は41人 基本的に健康には さほど問題のない41人が 医療費のかさむ年金生活者1人を養っています 2010年の米国は 年金生活者1人に対し労働者2人 これは世界中の裕福な産業国すべてに当てはまります 高齢化の現実がこのような状態で いかに患者を治療すればいいか?

これは年齢と医療費のグラフです ちょうど40~45歳のあたりで 医療費の急激な増加が見られます 興味深いのは 研究をすれば 個人の医療費が生涯に渡ってどれだけかかるか わかるということです 死の約7年前に費用が急激に上昇します ここから分かるのは… (笑) …よしておきます (笑)

このような病気の治療法を変え 私が健康的な加齢と呼ぶものを 実現できる方法は あまりありません 提案する方法は4つ 保険や法律に関連したことではありません それらは負担者を変えるだけで 治療費に変化は出せません

1つの方法は 医療を制限し 治療をやめることです こんな暗い話題はやめましょう もう1つは予防です 予防に多くの費用をかけるべきなのは明白です

興味深く 最も重要なのは 病気の早期発見をして 対症療法ではなく 完治するように治療すること 糖尿病を例に考えてみましょう 現在の糖尿病への対応とは? 症状が現れてから診断がなされ そして何十年と長期に渡る治療をし インスリンが効くので健康を保てますが 結局は効かなくなり 糖尿病がどんどん身体を弱らせる素因になります

症状が現れる前の初期の段階で すい臓を再生させる注射をすることは できないでしょうか? その時は多少費用が必要ですが 効果が出れば 違いは著しいでしょう

私が話している概念は このビデオで劇的に伝えられると思います これは再生中のイモリの手です イモリに可能ならば 我々にも可能なのでは? もう少し後で 手足再生に関する― もっと重要な事を紹介します 再生医療とは 体中すべての組織や 器官全体に適用できます 今日の実情では 病気になった場合 治療されるのは症状であり 患者には 新しいあり方への適応が求められます

いつ起きるのかは 議論の余地がありますが 近い将来に 再生医療を伴うリハビリが行われるようになるでしょう この義足は イラク帰還兵が使用しているものに よく似ています 手足を失ったイラク帰還兵が370名もいます 彼らが直面するのが 手足の喪失ではなく 手足の再生であるところを想像してみてください 興味深いですね その発想に向けた進行中の事例を紹介します

どの器官にも有効な方法です その方法とは 肉体と会話をすること 肉体の言語を話し 胎児だった時に使っていたプロセスを起動するのです 哺乳類の胎児は妊娠3ヶ月までに手足を失っても 再び形成されます 私たちのDNAはそのような怪我を治癒する機能を備えているのです これは自然な能力ですが 成長と共に失われます 生後6ヶ月以内の乳児であれば 指先を事故で失っても 元通りになりますが 5歳児だと 元通りにはなりません

そこで 肉体と対話する為には 肉体の言葉を話す必要があります 現在 そのための道具立てを我々は持っています 肉体と対話する能力3つの例を お見せします

1つめは細胞セラピー 私たちは主に細胞の働きによって 自然なプロセスとして自ら治癒します 適切な細胞を見つけ 体に移植すれば 細胞が治してくれるかもしれません 2つめは物質を使うこと 昨日 新物質の重要性について聞きました もし物質を発明したり 設計したり 自然界から抽出することが出来れば その物質で体自身が治癒するように誘導できるかもしれません 最後に 体の機能を肩代わりして 体が治癒できるようにする知的な装置を作れるかもしれません

それぞれの例を紹介します 物質から始めます ピッツバーグ大学のバディラック氏は 10年程前に素晴らしい事を思いつきました 生物学的に活性な状態のまま 豚の小腸からすべての細胞を 取り除いたなら 体に治癒を促すのに必要なすべての要素と信号が そこには含まれているかもしれない― というアイディアです 彼はとても重要な 質問をしました 通常は小腸で治癒を誘発する― 天然の物質を取り 人の耳の部分に 移植したら 組織固有の反応を見せて 耳を作り出すのか それとも小腸を 作り出すのか という質問です

興味深い話でなければ この話はしていません これからお見せする写真は… (スライド: 目をそらすなら今のうち) (笑) 注目に値する写真です でも 友人には認めたくなくても 怖ければ 明かりを落とすので 足下を気にしたり 携帯を確認したり スクリーンを見る以外のことをして下さい (笑)

お見せするのは糖尿病性潰瘍です 笑うのは今のうちです これが糖尿病の現実です 糖尿病や糖尿病性潰瘍はよく耳にしますが 治癒しなければ切断 という最終段階と 潰瘍をあまり関連づけすることはありません では始めます 長くはありません これが糖尿病性潰瘍 悲惨なものです 治療法は切断です この66歳の女性は糖尿病の他に肝臓ガンも患っており 死ぬのであれば 体は傷つけずにいようと決めたのですが

1年間の潰瘍治療の末 バディラック氏の 新しい治療法を試すことにしました 11週後の傷口の様子です その物質には自然の信号だけが含まれていました この物質が以前には無かった治癒反応を 引き起こしました

ショッキングな写真があと数枚出てきます 終わったら 言いますね これは馬です 痛みは感じていません そうでなければ お見せしません 乗馬事故に巻き込まれて このようになってしまいました 治療数週間後です このケースでは 物質をジェル状にして 傷口を覆い それを何度か繰り返して 完治しました 超音波でもはっきりわかります

これは新しい背びれを得たイルカです 世界中には現在40万人もの患者が この物質を用いた怪我の治療を受けています 手足は再生できるのでしょうか? この疑問の解明のため 8組織に渡るプロジェクトの資金として 国防省の研究機関が1500万ドルを提供しました

その1500万ドルの成果です これは指先を失った78歳の男性です 先程 指先を失う子どもの話をしましたね? これが治療後です これは現在起きていて 臨床的に意味のある事です これを可能にする物質もあり 心臓パッチもあります

もう一歩先へ進んで 物質の代わりに 物質と共に細胞を用いて 傷ついた組織を取り除き 生分解性物質の移植は可能なのか? 心筋が培養皿で鼓動しているのがわかりますね これは東京女子医大の岡野光夫氏が手掛けました 実際に培養皿で鼓動部分を生成できるのです 培養皿を冷やすと 特性が変わり そこから剥いで使うのです すごいですね

次は 細胞を使う話です ここで紹介するのは 患者の臀部から取り出した幹細胞です 怖がりの人向けではありませんが これは すごいですよ これはアルゴアが受けたようなバイパス手術ですが 違うのは ここでは バイパス手術の最後に 手術の初めに取り出された― 患者の幹細胞が 心臓に直接注射されていることです ここに立って この技術がどれだけ 最先端なのかをお見せします 患者の鼓動する心臓に幹細胞が入れられています 注意深く見ると まさにこの辺に 逆流しているのがわかります 細胞が戻って来るのが見えます 完璧に細胞を配置するには 新しい技術と装置が必要です

ちょっとした無作為化試験の データがあります 被験者数は20でしたが 現在は100です 基本的に重病人にバイパス手術を行えば 少し改善するだけですが もし同じ患者に バイパス手術と 幹細胞移植を行うと症状はなくなります これは 既に2年経っています もし病気を早期発見し 悪化を防げれば それほど最高なことはないでしょう

こちらは最小限の切開で行えるよう 体に3か所だけ穴を開け そこから腹腔鏡で 心臓に幹細胞を注入します 今 入っています 詳しく説明する時間はありませんが 基本的には うまく機能します 症状の軽い患者は このような治療で ほとんど症状が無い状態へ 戻ります

もう一つの幹細胞治療の例は もうすぐ 臨床段階に入ると思います これはピッツバーグのマーラ氏が 世界中の仲間と共同で 脂肪吸引流体で実験しています アメリカにはたっぷりありますからね (笑) 脂肪吸引流体には 幹細胞がぎっしり詰まっています クリニックへ行き 脂肪吸引施術をすれば 脂肪流体が出てきます ここでは分離した幹細胞から神経細胞が作られました 実験室での話です もうすぐ 自分の脂肪に由来する幹細胞で 治療を受ける患者が出てくるでしょう

先程 病気を治療する方法を 劇的に変える器具の話をしました 締めに ある事例を紹介します これもまた悲惨です 米陸軍外科研究所とは長い付き合いですが とても心が痛むものがあります 彼らは現在11,000人のイラク帰還兵の治療に当たっています 患者の多くが 重度の火傷を負っています

火傷から学んだ事があるとすれば 治療法が判らないこと 火傷治療に行われるのは 芝敷きアプローチです こっちにあるものを取って 火傷の部位に移植し くっつけようとします このケースでは新しく装着できるバイオリアクターを ピッツバーグのガーラック氏が開発し 今年中に 臨床試験が行われるはずです バイオリアクターを創傷床にくっつけ そして その部分に 細胞をスプレーします リアクターがその環境を肥やし 同時に他の物も運びます そして芝に種まきが出来るのです 芝敷きアプローチとは反対です まるっきり違います

18分経ちましたので 良い報せと 悪い報せを 話して終わります 朗報は これが現在起きているということ その迫力が 写真で伝わりますね 多分野に渡る研究の為 非常に難しいのです 科学 工学 臨床の分野のほとんどが この実現に向けて取り組んでいます

多くの政府や地域が これこそ新しい治療法だと認めています 初めて認めたのは おそらく日本政府で 30億ドルの投資を決め 後に 20億ドル追加しました それもそのはず 日本は世界一の長寿国です これが成功しないと 日本の医療制度は崩壊するため 彼らはこの分野に戦略的に投資しています ヨーロッパ連合も然り 中国も然り 中国は 組織工学研究センターを設立しました 初年度予算は2億5千万ドルでした

アメリカのアプローチは少し違います (笑) アル ゴアが大統領になれば良かったのですが… 我々のアプローチは うまくいったものに投資するやり方で 新技術を生み出し 集中させる為に 必要なものを集める戦略的な投資ではないのです

少しずるいやり方かもしれませんが 国立衛生研究所(NIH)所長の言葉を引用して終わりにします 私はハーバードの バカンディ氏と共に NIHの部門責任者たちに会いに行きました 数か月前の事です 来年度予算275億ドルの中の少しだけでも振り向けて 再生技術が患者に届くペースが 加速するよう 戦略的に注力すべきであると 説得するためです ピリピリした会合の最後に 所長が言いました “君の話は壮大すぎて気が進まない” 我々のビジョンは何者によっても変わりません みんなで彼の気持ちの方を変えてやりましょう ありがとう

TED 韓国語 翻訳